CATIONIC HYDRIDE COMPLEXES OF NICKEL

Taro SAITO

Department of Chemistry, The University of Tokyo,
Hongo, Tokyo 113

A series of cationic hydride complexes of nickel $[NiH(L)(PCy_3)_2]^+BPh_4^-$ (PCy_3 = tricyclohexylphosphine, L = pyridines, pyrazole and imidazole) have been synthesized and characterized.

During the course of our further study on nickel and palladium hydride complexes, $^{1)2}$) we have recently isolated another stable nickel hydride complex NiH(NO₃)(PCy₃)₂ (Cy = C₆H₁₁). The complex was now found to react readily with sodium tetraphenylborate in the presence of neutral ligands to give the cationic hydride complexes [NiH(L)(PCy₃)₂] +BPh₄ (Ph = C₆H₅), where L stands for pyridines, pyrazole and imidazole. The similar type of platinum complexes have been known for some years, 4 - 6) but no nickel analogue has been reported. Some cationic nickel hydride complexes of other types are known. 7 - 9)

Thus the treatment of NiH(NO $_3$)(PCy $_3$) $_2$ with sodium tetraphenylborate and a neutral ligand in benzene-methanol under N $_2$ at 20° precipitates the product as light yellow crystals which can be recrystallized from dichloromethane-hexane. The complexes tend to occulude the solvents of crystallization. These cationic hydride complexes are rather stable both thermally and towards air in the solid state. Conductivity measurements on 10^{-3} M-solutions in nitromethane confirmed that they are 1: 1 electrolyte. The infrared spectra of the complexes showed $v_{\rm Ni-H}$ in 1900 cm $^{-1}$ region and the high-field $^{1}{\rm H}$ n.m.r. spectra showed triplet signals (1:2:1) which are given in the table. The triplets indicate that tricyclohexylphosphine ligands are coordinated to nickel in mutually trans positions. The facile reaction of NiH(NO $_3$)(PCy $_3$) $_2$ with sodium tetraphenylborate seems to be another indication that NO $_3$ group is a good leaving group, 6) especially when assisted by strong trans effect of hydride H.

Compound	M.P. (dec) °C	Ir data ^a VNi-H cm ⁻¹	¹ H n.m.r. data Chem. Shift ppm (TMS)	(Ni-H) ^b J _{P-H} Hz
[NiH(pyridine)(PCy ₃) ₂]BPh ₄	190-192	1983	33.44	69.0
[NiH(α-picoline)(PCy ₃) ₂]BPh ₄	217-219	1970	33.38	71.0
[NiH(β -picoline)(PCy ₃) ₂]BPh ₄ ·CH ₂ C1 ₂	177-179	1984	33.48	69.5
[NiH(γ -picoline)(PCy ₃) ₂]BPh ₄ ·CH ₂ C1 ₂	174-175	1994	33.56	70.0
[NiH(4-Ph-pyridine)(PCy ₃) ₂]BPh ₄ ·C ₆ H ₆	173-175	1960	33.25	68.5
[NiH(pyrazole)(PCy ₃) ₂ BPh ₄	155-156	1938	33.66	70.0
[NiH(imidazole)(PCy $_3$) $_2$]BPh $_4$ 1/2C $_6$ H $_6$	230-232	1984	33.67	72.0

a. KBr disc b. $\mathrm{CH_2Cl_2}$ solution

REFERENCES

- 1) M. L. H. Green, T. Saito, and P. J. Tanfield, J. Chem. Soc. (A), 152 (1971).
- 2) M. L. H. Green H. Munakata, and T. Saito, J. Chem. Soc. (A), 469 (1971).
- 3) T. Saito, unpublished results.
- 4) M. J. Church, and M. J. Mays, J. Chem. Soc. (A), 3074 (1968).
- 5) H. C. Clark, and K. R. Dixon, J. Amer. Chem. Soc., 91, 596 (1969).
- 6) A. J. Deeming, B. F. G. Johnson, and J. Lewis, Chem. Comm., 598 (1970).
- 7) W. C. Drinkard, D. R. Eaton, J. P. Jesson, and R. V. Lindsey, Jr., Inorg. Chem., 9 392 (1970).
- 8) R. A. Schunn, Inorg. Chem., 9, 394 (1970).
- 9) M. L. H. Green, and H. Munakata, Chem. Comm., 549 (1971).

(Received November 12, 1974)